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Introduction	  

In	  response	  to	  the	  developments	  in	  inspection	  technologies,	  infrastructure	  decision-‐making	  methods	  
evolved	  whereby	  the	  optimum	  combination	  of	  inspection	  decisions	  on	  the	  one	  hand	  and	  maintenance	  
and	  rehabilitation	  decisions	  on	  the	  other	  are	  determined	  based	  on	  an	  economic	  evaluation	  that	  
captures	  the	  long	  term	  costs	  and	  benefits.	  Recently,	  sample	  size	  has	  been	  included	  in	  inspection,	  
maintenance,	  and	  rehabilitation	  (IM&R)	  decision-‐making	  as	  a	  decision	  variable	  when	  considering	  a	  
single	  facility.	  While,	  the	  question	  of	  dealing	  with	  a	  network	  of	  facilities	  in	  making	  IM&R	  decisions	  has	  
been	  addressed	  in	  the	  literature,	  this	  treatment	  does	  not	  consider	  condition	  sampling	  whereby	  each	  
facility	  could	  require	  a	  different	  set	  of	  sample	  sizes	  over	  time.	  

This	  report	  presents	  an	  overview	  of	  the	  methodology	  developed	  to	  address	  the	  network	  level	  problem	  
whereby	  the	  uncertainty	  due	  to	  condition	  sampling	  is	  captured	  and	  its	  related	  decision	  variables	  
included	  in	  the	  IM&R	  decision	  making	  process.	  An	  example	  application	  is	  described	  and	  results	  and	  
insights	  are	  presented.	  The	  parameters	  of	  the	  example	  of	  interest	  are	  determined	  by	  drawing	  upon	  
various	  cases	  reported	  in	  the	  literature	  to	  arrive	  at	  a	  realistic	  base	  scenario	  for	  analysis.	  A	  
comprehensive	  sensitivity	  analysis	  is	  also	  conducted	  to	  explore	  the	  effect	  of	  various	  factors	  on	  the	  
optimal	  solution.	  	  

Findings	  

Based	  on	  examining	  the	  base	  scenario,	  it	  is	  clear	  that	  larger	  sample	  sizes	  can	  compensate	  for	  decreasing	  
inspection	  accuracy	  up	  to	  a	  point	  where	  the	  degrading	  accuracy	  is	  so	  large,	  increasing	  the	  sample	  sizes	  
does	  not	  offer	  much	  if	  any	  value.	  In	  addition,	  and	  not	  surprisingly,	  a	  stricter	  annual	  budget	  constraint	  
will	  results	  in	  reduced	  expected	  IM&R	  cost	  and	  larger	  expected	  user	  and	  terminal	  costs.	  And,	  overall,	  an	  
increase	  in	  the	  expected	  total	  cost	  is	  expected.	  Moreover,	  the	  effect	  of	  including	  sampling	  as	  a	  decision	  
variable	  is	  found	  to	  be	  appreciable	  in	  terms	  of	  the	  expected	  total	  cost	  at	  optimality.	  

Based	  on	  examining	  all	  scenarios	  combined,	  the	  sensitivity	  analysis	  revealed	  that	  the	  user	  cost,	  annual	  
budget	  constraint,	  terminal	  cost,	  and	  the	  spatial	  correlation	  function	  have	  appreciable	  impact	  on	  the	  
optimal	  solution.	  Among	  these	  four	  factors,	  the	  impacts	  of	  the	  user	  cost	  and	  annual	  budget	  constraint	  
are	  the	  most	  marked.	  Furthermore,	  these	  factors	  do	  interact	  with	  one	  another	  and	  the	  most	  notable	  
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interaction	  in	  terms	  of	  its	  magnitude	  and	  implications	  to	  agencies	  is	  that	  between	  user	  cost	  and	  the	  
budget	  constraint.	  

Recommendations	  

It	  is	  important	  to	  conduct	  a	  more	  extensive	  evaluation	  to	  quantify	  the	  value	  of	  capturing	  sampling	  
uncertainty	  and	  including	  sampling	  as	  a	  decision	  variable.	  Such	  a	  comprehensive	  evaluation	  has	  been	  
conducted	  in	  the	  literature	  for	  the	  facility	  level	  problem	  in	  the	  absence	  of	  a	  budget	  constraint.	  However,	  
it	  remains	  to	  be	  undertaken	  as	  part	  of	  future	  research	  for	  the	  network	  level	  problem.	  

Clearly,	  the	  results	  are	  limited	  given	  the	  hypothetical,	  albeit	  realistic,	  nature	  of	  the	  scenarios	  considered	  
in	  the	  numerical	  analyses	  presented	  in	  this	  report.	  Therefore,	  it	  is	  critical	  to	  demonstrate	  and	  assess	  the	  
value	  of	  the	  developed	  methodology	  under	  field	  conditions	  to	  achieve	  a	  more	  comprehensive	  and	  
realistic	  evaluation	  and	  possible	  refinements.	  

Another	  important	  limitation	  of	  the	  developed	  framework	  worth	  addressing	  is	  the	  absence	  of	  capturing	  
facility	  interactions.	  Important	  interactions	  have	  been	  captured	  in	  the	  literature.	  However,	  condition	  
sampling	  is	  not	  considered	  in	  such	  investigations.	  Developing	  a	  decision-‐making	  framework	  that	  
simultaneously	  captures	  facility	  interactions	  and	  includes	  condition	  sample	  sizes	  across	  facilities	  and	  
over	  time	  as	  decision	  variables	  would	  be	  worthwhile.	  

Contacts	  
For	  more	  information:	  

Rabi	  G.	  Mishalani	  
Principal	  Investigator	  
Dept.	  of	  Civil	  &	  Environ.	  Engineering	  and	  Geodetic	  Science	  
The	  Ohio	  State	  University	  
mishalani.1@osu.edu	  
	  
Prem	  Goel	  
Co-‐Principal	  Investigator	  
Department	  of	  Statistics	  
The	  Ohio	  State	  University	  
goel.1@osu.edu	  

NEXTRANS	  Center	  
Purdue	  University	  -‐	  Discovery	  Park	  
2700	  Kent	  B-‐100	  
West	  Lafayette,	  IN	  47906	  
	  
nextrans@purdue.edu	  
(765)	  496-‐9729	  
(765)	  807-‐3123	  Fax	  
	  
www.purdue.edu/dp/nextrans	  
	  

	  



NEXTRANS Project No. 034OY02 

OPTIMAL CONDITION SAMPLING FOR A NETWORK OF  
INFRASTRUCTURE FACILITIES 

By 

Rabi G. Mishalani, Principal Investigator 
Associate Professor of Civil and Environmental Engineering  

and Geodetic Science 
The Ohio State University 

mishalani@osu.edu 
 

and 
 

Prem K. Goel, Co-Principal Investigator 
Professor of Statistics 

The Ohio State University 
goel.1@osu.edu 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Report Submission Date: December 31, 2011 



R.G. Mishalani & P.K. Goel 
	  

2 

ACKNOWLEDGMENTS AND DISCLAIMER 

Partial funding for this research was provided by the NEXTRANS Center, Purdue University 
under Grant No. DTRT07-G-005 of the U.S. Department of Transportation, Research and 
Innovative Technology Administration (RITA), University Transportation Centers Program. 
Additional funding was provided by The Ohio State University (OSU) including the College of 
Engineering and the Department of Statistics. The efforts of Graduate Research Assistants Cheng 
Chen and Dunke Zhou are greatly appreciated. The contents of this report reflect the views of the 
authors, who are responsible for the facts and the accuracy of the information presented herein. 
This document is disseminated under the sponsorship of the Department of Transportation, 
University Transportation Centers Program, in the interest of information exchange. The U.S. 
Government assumes no liability for the contents or use thereof. 



R.G. Mishalani & P.K. Goel 
	  

3 

TABLE OF CONTENTS 

1 INTRODUCTION 4 

2 NETWORK-LEVEL APPROACH AND DEVELOPED METHOD 5 
2.1 Network-level approach without sampling 5 
2.2 Developed network-level approach incorporating sampling 7 

3 NUMERICAL ANALYSES 8 
3.1 Base scenario development 9 
3.2 Effect of measurement error 9 
3.3 Effect of annual budget constraint 12 
3.4 Effect of optimal sampling 13 
3.5 Sensitivity analysis 14 

4 CONCLUSION 17 

5 REFERENCES 18 

LIST OF TABLES	  

TABLE 1 Base Scenario Parameter Values (all costs in $/m2) 9 

TABLE 2 Standard Deviations of Measurement Errors 10 

TABLE 3 Factor Levels (L) and Values 15 

LIST OF FIGURES 

FIGURE 1 Expected total cost versus standard deviation of technology 1’s  
measurement error 10 

FIGURE 2 Expected inspection cost versus standard deviation of technology 1’s  
measurement error 11 

FIGURE 3 Expected total, user, IM&R, and terminal cost versus annual budget constraint 12 

FIGURE 4 Expected total cost at optimality under pre-determined and optimal sample sizes 13 

FIGURE 5 Average expected total cost versus factor levels 16 

FIGURE 6 Pair-wise factor interaction plots 17 



R.G. Mishalani & P.K. Goel 
	  

4 

1 INTRODUCTION 

Transportation infrastructure systems consist of spatially extensive and long-lived sets of 
facilities. Over the past two decades, several new non-destructive inspection technologies have 
been developed and applied in collecting raw condition data and processing them to produce 
useful condition input to infrastructure inspection, maintenance, and rehabilitation (IM&R) 
decision-making aimed at minimizing total expected life-cycle cost. Inspection deals with the 
gathering of data on the extent of facility damage. The data may be collected by visual 
inspection, through manual measurements, or by automated sensors. An average of collected 
damage measurements over a facility (defined as a homogeneous section) is an estimate of the 
current condition of that facility and, in turn, is one primary input to maintenance and 
rehabilitation (M&R) decision-making. 

The developments in nondestructive inspection technologies make it possible to estimate 
facilities’ conditions using large quantities of data. The quality of measurements, the sample size, 
and the nature of correlation among condition variables at different locations determine the 
accuracy of condition estimates. Naturally, more accurate estimates have the potential to lead to 
more effective maintenance and rehabilitation decisions. Consequently, the expected combined 
user costs and maintenance and rehabilitation costs are reduced over the planning horizon. 
However, more accurate information requires more resources such as increased inspection 
frequency, advanced inspection sensor technologies, larger sample sizes, or possibly less 
correlated observations, as well as data processing methods that appropriately combine all this 
information. 

In response to the developments in inspection technologies, decision-making methods 
evolved whereby the optimum combination of inspection decisions on the one hand and M&R 
decisions on the other are determined based on an economic evaluation that captures the long 
term costs and benefits. Madanat (1993), Madanat & Ben-Akiva (1994), and Ellis et al. (1995) 
extended the Markov Decision Process (MDP) based infrastructure management 
decision-making framework (Golabi et al. 1982, Carnahan et al. 1987), which captures 
forecasting uncertainty, to the Latent Markov Decision Process (LMDP) framework by 
incorporating measurement errors associated with condition inspection. In addition, inspection 
technology and timing were introduced as decision variables. Recently, the LMDP framework 
was extended to include condition sample size as a decision variable in IM&R decision-making 
(Mishalani & Gong 2009). However, several of the aforementioned studies including this latest 
extension only considered decisions for a single facility. 

The question of dealing with a network of facilities in making M&R decisions has been 
addressed in the literature through a variety of formulations – e.g. Golabi et al. (1982), Golabi & 
Shepard (1997), Murakami & Turnquist (1995), Smilowitz & Madanat ( 2000), Durango-Cohen 
and Sarutipand (2007), and Kuhn (2010). However, the treatments, while addressing several 
important issues, do not consider condition sampling whereby each facility could require a 
different and time-varying sample sizes. Doing so optimally is valuable given the network nature 
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of facilities that most infrastructure agencies are responsible for, the increasing number of 
inspection technology choices with possible varying degrees of accuracy and cost, and budget 
constraints agencies have to work within. 

In the next section, a methodology for IM&R decision-making at the network level is 
introduced followed by the presentation of a new extension taking into account recent 
developments addressing sampling at the single facility level. The result is a methodology that 
captures the uncertainty due to condition sampling and includes sampling as decision variables in 
the IM&R decision-making process at the network level. In the third section, a numerical 
application of the methodology and a sensitivity analysis based on a realistic literature- and 
practice-derived example network of facilities are discussed and insights regarding condition 
sampling at the network level are derived. The final section summarizes the study and its 
findings, and presents directions for future research. 

2 NETWORK-LEVEL APPROACH AND DEVELOPED METHOD 

In this section, the network level approach based on a randomized policy is first summarized. 
Based on this approach the developed methodology is presented. In doing so, the treatment of 
sampling at the facility level is incorporated in solving the problem at the network level. 

2.1 Network-level approach without sampling 

Some network-level IM&R decision-making methods in the literature adopted randomized 
policies (Golabi 1982, Golabi & Shepard 1997, Murakami & Turnquist 1995, Smilowitz & 
Madanat 2000, Harper et al. 1990, Gopal & Majidzadeh 1991). Smilowitz & Madanat (2000) 
proposed a linear programming formulation for solving the infrastructure IM&R optimization 
problem at the network level considering inspection technology and timing as decision variables. 
Given the advances that study achieved in capturing these inspection decisions, it provides a 
natural basis for the methodology presented in this report. Before describing the formulation 
proposed by Smilowitz & Madanat (2000), certain critical elements are first introduced. 

Assessed facility condition is assumed to fall into one of a finite number of discrete 
condition states. Considering that inspection is not perfect, it is assumed that the measurement of 
condition states does not produce the true condition state. In order to infer the true condition 
states based on measurements, the nature of measurement error has to be considered. To do so, 
the concept of the information vector is introduced. This vector is a probability mass function on 
all possible condition states conditional on prior information. This prior information consists of 
the initial condition state before any decisions are made (i.e., at time 0), the M&R actions applied 
up to the current point in time, and all the condition measurements taken including the most 
recent inspection. 

In the formulation developed by Smilowitz & Madanat (2000), two types of actions are 
considered. One represents the M&R actions to be performed and the other represents whether to 
inspect condition or not. The various M&R actions have different costs and result in different 
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condition state transition probabilities over time. The inspection action space includes taking a 
condition measurement or not. Inspection improves the understanding of the true condition state. 
That is, the information vector will be more concentrated around the true condition state. 

Transition probabilities specify how facility condition evolves during the next time 
period, given the current condition state, age, and M&R action applied. More specifically, a 
transition probability represents the likelihood of a facility to transition to a certain condition 
state in one period given the condition state it is currently in. Therefore, transition probabilities 
can be organized into a matrix representing all combinations of transitions from state to state. 
Two facilities in the same condition state to which the same M&R action is applied will have 
different transition probabilities if their age is different. Age is defined as the number of years 
since the most recent rehabilitation action was applied. The facility with lower age has a smaller 
probability of deteriorating to a poorer state during the next period. Therefore, it is important to 
allow for non-stationary transition probabilities conditional on the age of a facility. 

Finally, two cost components are considered. The first component is the cost incurred due 
to IM&R and depends on the specific actions performed. The other component is the user cost 
which only depends on the condition state. 

Given the above elements, the problem of determining the best decision can then be 
formulated as a linear program with the following components. 

1. Decision variables: Wt(I,y,a,r) denotes the number of facilities at time t whose information 
vector is I and age is y on which M&R action a will be performed, and which will be 
inspected if r = 1 and not if r = 0. The nature of the decision variables when solving the 
network problem is that of a randomized policy. That is, facilities associated with the same 
information vector could receive different actions (optimally determined). Such a result is 
possible due to the presence of budget and condition constraints (discussed in more detail 
below). It is important to note that the specific facilities associated with the same 
information vector that are to receive one set or another of the determined optimal actions is 
not part of the solution outcome. Such decisions could be arrived at by managers at a 
subsequent stage given the optimal randomized policy. 

2. Objective function: For each feasible realization of the decision variables, the expected total 
discounted cost includes the user and IM&R costs and is a linear function of the decision 
variables. 

3. Constraints: (i) Non-negativity constraints guarantee that each decision variable is non-
negative. (ii) Conservation constraints ensure the conservation of facilities over time. That 
is, the information vectors must transition from one period to the next in a manner consistent 
with the condition state transition probabilities. (iii) The initial distribution of facilities as 
defined by a set of information vectors is assumed known and takes the form of an initial 
state constraint. (iv) Condition state constraints require that the proportion or number of 
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facilities in the condition states considered to be poor is bounded by a maximum value each 
year. (v) Budget constraints require that the IM&R cost is bounded by a maximum and 
possibly a minimum value each year. 

At this point, the problem is reduced to finding the values of the decision variables that 
satisfy all the constraints and achieve the minimal objective function value. Since the objective 
function and all the constraints are linear with respect to the decision variables, the problem can 
be solved using linear programming. 

2.2 Developed network-level approach incorporating sampling 

The formulation developed by Smilowitz & Madanat (2000) described above generalizes the 
facility level framework developed by Madanat & Ben-Akiva (1994) to a network level one by 
introducing randomized decisions and solving a linear programming problem. It includes many 
realistic elements. However, an important decision variable and an associated modeling element 
are not captured in this formulation, namely, the sample size and spatial correlation among 
measurements of condition taken at different locations along the same facility. 

The role of sampling is to increase the accuracy of the information regarding facility 
condition state. On the one hand, more samples result in higher accuracy. On the other hand, 
more samples will introduce more cost. Thus, sample sizes for each facility over time are 
important decision variables. Effectively, in the formulation developed by Smilowitz & Madanat 
(2000), for a facility either one sample is taken or not, which is quite limiting. Therefore, the 
extended formulation developed in this report includes sample sizes as decision variables. In 
addition, in the application two condition inspection technologies are considered rendering the 
set of inspection decisions more flexible. Once multiple samples are taken from the same facility, 
the spatial correlation among these condition observations must be considered in quantifying the 
combined measurement and sampling uncertainty. Therefore, a spatial correction function 
(Mishalani & Koutsopoulos 2002) is adopted in determining this uncertainty. 

Elements similar to those of the formulation discussed above are first noted. The assessed 
facility condition is assumed to fall into one of a finite number of discrete condition states. Given 
the current condition assessment through measurement and sampling along with historical 
information including previous measurements and IM&R actions, the posterior probability mass 
function of the true condition state of each facility (i.e., the information vector) can be 
determined. Also, it is important to keep track of age in addition to time because the transition 
probabilities (which take the same form discussed above) depend on age. 

The variance of the assessed condition is a critical element of the new formulation and 
constitutes a major departure from the formulation developed by Smilowitz & Madanat (2000). 
This variance is determined as a function of the measurement technology, sample size, and the 
characteristics of the facility in terms of its intrinsic variability in condition and the spatial 
correlation. The determination of this variance is based on the formulation developed by 
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Mishalani & Gong (2009) for a single facility. Another important departure from the formulation 
discussed above is the introduction of facility length, h, in representing the network. This 
variable influences the value of the determined variance of the assessed condition depending on 
the sample size, intrinsic variability, and spatial correlation. Finally, in addition to the user and 
IM&R costs discussed above, the hypothetical terminal cost incurred at the end of the time 
horizon represents the cost of bringing the facility back to the best condition state for the purpose 
of equalizing the service life from that point onward. 

In light of the elements described above, the problem of determining the best decision can 
similarly be formulated as a linear program with the following components. 

1. Decision variables: Wt(I,h,y,a,r,n) denotes the number of facilities at time t whose 
information vector is I, its length is h, and of age y on which M&R action a will be 
performed, and inspection technology r will be used with n samples. As in the case of the 
formulation developed by Smilowitz & Madanat (2000), the nature of the decision variables 
when solving the network problem is that of a randomized policy. That is, facilities 
associated with the same information vector could receive different actions (optimally 
determined). Again, such a result is possible due to the presence of budget and condition 
constraints. And, as in the case of the study by Smilowitz & Madanat (2000), the optimal set 
of actions specific facilities associated with the same information vector are to receive is not 
part of the solution outcome. 

2. Objective function: For each feasible realization of the decision variables, the expected total 
discounted cost includes the user, IM&R, and terminal costs. Of course, the decision 
variables now include the sample size n and the original measurement uncertainty is 
extended to include measurement and sampling uncertainty taking into account the sample 
size, facility length, intrinsic variability, and spatial correlation. The objective function 
remains a linear function of the decision variables. 

3. Constraints: The constraints are similar to those of the formulation developed by Smilowitz 
& Madanat (2000) discuss above. 

As in the case of the study by Smilowitz & Madanat (2000), the problem is reduced to 
finding the values of the decision variables that satisfy all the constraints and achieve the 
minimal objective function value, which can be solved using linear programming. 

3 NUMERICAL ANALYSES 

In this section an example application is described and results and insights are presented. First, 
the example base scenario is specified. Second, the effect of measurement error is explored under 
this base scenario. Third, the effect of the annual budget constraint is investigated under the same 
scenario. Fourth, the value of including sampling as a decision variable is investigated, again 
under the same scenario. Finally, a set of additional scenarios is specified and a sensitivity 
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analysis is conducted. These investigations lead to theoretical and practical implications, which 
are discussed as well. 

In all the applications presented in this section, a ten-year planning horizon is considered 
and each facility in the network is assumed to be in perfect condition at the beginning of the 
planning horizon. In applying the developed methodology for all the analyses presented in this 
section, the computational cost associated with the size of the problem must be addressed. This is 
done through discritizing and grouping information vectors where the resolution of the vector 
space is set to 0.1. 

3.1 Base scenario development 

The parameters of the example of interest are determined by drawing upon various cases 
reported in the literature to arrive at a realistic base scenario for analysis. The specification is for 
the most part based on a realistic example developed by Gong (2006). The parameter values are 
shown in Table 1. 

TABLE 1 Base Scenario Parameter Values (all costs in $/m2) 

Condition State 4 3 2 1 
Routine maint. cost 0.34 1.63 4.4 14.79 
User cost 18.47 56.735 75.155 113.43 
Terminal cost 2.675 22.485 55.695 64.87 
Rehab. cost 64.87 
Additional user cost due to M&R 1.45 for routine maintenance and 10.13 for rehabilitation 
Additional user cost due to 
inspection 

0.09 for inspection tech. 1 and 0.0015 for inspection tech. 
2 

Fixed inspection cost 0.0119 for inspection tech. 1 and 0.0093 for inspection 
tech. 2 

Unit inspection cost 0.00023 for inspection tech. 1 and 0.000085 for insp. Tech. 
2 

Intrinsic variance Function of the true condition state 
Var. of insp. tech. Tech. 1: 7.99, tech. 2: 17.95 

 

3.2 Effect of measurement error 

To test the effect of measurement error, an important element of the formulation especially in 
light of sampling, different pairs of values of the standard deviations of the two measurement 
technologies are specified as shown in Table 2 reflecting a wide spectrum ranging from perfect 
measurements to very poor measurements. Level 2 represents the base scenario while levels 1 
and 9 represent the two extreme scenarios of perfect and poor measurements, respectively. 
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TABLE 2 Standard Deviations of Measurement Errors 

 Standard Deviation 

Level Tech. 1 Tech. 2 

1 0 0 
2 (base scenario) 7.99 17.95 
3 15 30 
4 30 60 
5 50 100 
6 80 160 
7 150 300 
8 500 1000 
9 1000 2000 

 

FIGURE 1 Expected total cost versus standard deviation of technology 1’s  
measurement error. 

 

Figure 1 shows the expected total cost (in $/m2) at optimality as a function of the standard 
deviation of measurement technology (of technology 1 in this case). As expected, notice that the 
total expected cost, in general, increases as the measurement error increases. However, at level 4, 
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there is a decrease in the expected total cost with respect to levels 2 and 3. This drop is likely due 
to the discritization and grouping of information vectors. (A higher resolution would naturally 
produce more accurate results that would avoid such anomalies. However, a higher resolution 
requires a higher computational cost, which was not practical given the large number of 
scenarios considered subsequently. 

Figure 2 shows the expected inspection cost (in $/m2) at optimality as a function of the 
standard deviation of measurement technology (of technology 1 in this case). Notice that the 
inspection cost, in general, increases as the measurement error increases reflecting the situation 
where larger samples are taken to compensate for the deteriorating measurement accuracy. At 
some point, however, the inspection cost starts to decrease reflecting the loss of value of 
information as measurement errors become particularly large where sample size cannot even 
compensate for the degradation in accuracy. Notice that at levels 2 and 6 the function deviates 
from the above described phenomenon. As in the case of the expected total cost function of 
Figure 1, these anomalies are likely to be due to the discritization and grouping of information 
vectors. 

 

FIGURE 2 Expected inspection cost versus standard deviation of technology 1’s  
measurement error. 

 



R.G. Mishalani & P.K. Goel 
	  

12 

3.3 Effect of annual budget constraint 

The annual budget constraint is another important element of the formulation. Practically, the 
infrastructure agency budget is limited and often predetermined. In this application the condition 
state is not restricted to be maintained above a certain minimum level. However, the worse the 
condition state, the larger the user cost. As such the annual budget constraint plays a critical 
element in the optimization. Different values of annual budget constraints are specified at 100, 
20, 15, 10, 8, 6, 4, 2, and 1 (in $/m2). 

The expected total cost at optimality along with each of its elements – user, IM&R, and 
terminal costs – in $/m2 are plotted against the budget constraint applied on an annual basis (also 
in $/m2) in Figure 3. As intuitively anticipated, a stricter annual budget constraint results in 
reduced expected IM&R cost and larger expected user and terminal cost. And, overall, an 
increase in the expected total cost is expected. 

 

FIGURE 3 Expected total, user, IM&R, and terminal cost versus annual  
budget constraint. 
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3.4 Effect of optimal sampling 

To determine the value of including sampling as decision variable with respect to the case where 
the sample size is pre-determined at a given level for all facilities repeatedly over time, the 
optimal solutions for the latter cases are determined and compared to that arrived at under the 
former case for the base scenario. Figure 4 shows the expected total cost at optimality under each 
of the above cases. The dashed horizontal line in Figure 4 indicates the expected total cost at 
optimality produced for the base scenario where the sample size is free to vary as a decision 
variable across all facilities and over time when determining the optimal IM&R policy. That is, 
the x-axis is not pertinent for this case; it is shown to facilitate the comparison. 

 

 

FIGURE 4 Expected total cost at optimality under pre-determined and optimal sample sizes. 

 

The first set of points shown above the dashed line indicates the expected total costs at 
optimality when measurement technology 1 and the sample size value shown along the x-axis are 
set as inputs to determining the optimal M&R policy. The second set of points shown above the 
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previously described set correspond to the cases where measurement technology 2 is set as the 
technology of choice, and similarly, the sample size is set to the values shown along the x-axis. 
The relative difference between the expected total cost under the pre-determined sample size 
cases and the expected total costs when sample size and the choice of technology are optimized 
along with the M&R actions ranges between 1.7% to 2.2% suggesting an appreciable reduction 
in expected total cost when sampling is considered as a decision variable in light of the large 
costs typically associated with managing infrastructure networks. 

Additional evaluations could be conducted considering the value of capturing the effect 
sampling uncertainty, either when the sample size is pre-determined or is determined optimally, 
with respect to the case where sampling and sampling uncertainty are ignored all together. 
However, such an evaluation requires a more involved simulation set-up, which is reserved for 
future research. 

3.5 Sensitivity analysis 

A sensitivity analysis is also conducted to explore the effect of various factors on the optimal 
solution. The factors and their corresponding values at different levels are shown in Table 3. The 
levels corresponding to the base scenario presented above are shown in italics. The other levels 
are based on additional scenarios developed to capture realistic ranges the various parameters 
could take. 

In total, 1,458 scenarios are considered. The average expected total cost is calculated for 
each factor level, one factor at a time. The results are shown in Figure 5. User cost has the largest 
effect on the expected total cost. The annual budget constraint is the second most influential 
factor. The terminal cost and spatial correlation have similar effects on the expected total cost, in 
terms of magnitude. The effects of fixed inspection cost and unit inspection cost seem to be 
negligible. 

Based on these results, not surprisingly, user cost is a key driver of IM&R decisions. 
Higher user costs result in more M&R actions to be taken to avoid increased used costs at poorer 
condition levels. Therefore, it is critical for agencies to assess and represent user costs accurately 
to avoid either over-spending on M&R actions (in the case where user costs are overestimated) 
or under-spending on M&R actions (in the case where use costs are underestimated) resulting in 
large user costs in actuality. 

Again not surprisingly, the annual budget constraint is another key aspect of the problem. 
The lower the constraint, the more restricted the agency is in applying expensive M&R actions 
and the higher the user costs are due to the resulting poorer condition levels. In light of the 
quantification of the effect of the budget constraint on the expected total cost at optimality, it is 
worthwhile for agencies to determine such quantifications and present them to budget developers 
as an important input to setting budgets with a clear understanding of their implications on user 
costs. 
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TABLE 3 Factor Levels (L) and Values 

Factor L Pavement Condition State 
  4 3 2 1 

0 independent observation 
1   ρ(s) = exp(−0.054271× s),∀s > 0  Correlation function 
2   ρ(s) = exp(−0.026348× s),∀s > 0  
0 0.0045 for 1 and 0.0042for 2 
1 0.0119 for 1 and 0.0093 for 2 Fixed inspection cost ($/m2) 
2 0. 0291 for 1 and 0.0152 for 2 
0 5.75 
1 2.71 Unit cost ratio: tech 2  

to tech 1 2 1.62 
0 13.67 42 55.64 83.97 
1 18.47 56.74 75.16 113.4 User cost ($/m2) 
2 34.72 106.7 81.29 213.2 
0 2.675 22.49 48.14 64.87 Terminal cost ($/m2) 1 0 0 0 0 
0 100 
1 20 
2 15 
3 10 
4 8 
5 6 
6 4 
7 2 

Annual Budget Constraint 

8 1 
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FIGURE 5 Average expected total cost versus factor levels. 

It is valuable to note that the spatial correlation among adjacent observations along a 
facility, which has been shown to be present (Mishalani & Koutsopoulos 2002), does have an 
impact on the optimal solution and, thus, it is important for agencies to have a good 
understanding of the nature of this correlation. 

As for terminal cost, the magnitude of the impact of ignoring such adjustments is not 
trivial and, therefore, it is crucial from a practical perspective for agencies not to overlook the 
equalization of service life concept, which has been theoretically established. 

While the effect of inspection costs is negligible when it comes to the actual expected 
total cost at optimality, as is expected given the much larger magnitudes associated with M&R 
and user costs, it is important not to misinterpret this result as an indication of the lack of 
importance of considering inspection and sampling as part of the decision-making framework. 
Considering the uncertainty associated with inspection and sampling has important implications 
on the M&R actions that need to be taken. And, as has already been discussed, by setting the 
sample size at some predetermined levels, the expected total cost at optimality increases by 
appreciable amounts. 

To investigate possible interaction between the above factors, interaction plots as shown 
in Figure 6 are analyzed by identifying functions for pairs of factors exhibiting increasing or 
diminishing differences for various combinations of levels. Several interactions are observed 
among pairs of user cost, budget constraint, terminal cost, and spatial correlation. 
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FIGURE 6 Pair-wise factor interaction plots. 

 

 

Based on the above single factor discussion and the patterns exhibited in Figure 6, the 
most dominant and noteworthy interaction is that between the user cost and the budget 
constraint. The impact of the budget constraint on the optimal solution is larger under a higher 
user cost. That is, when the user cost parameters are high, the effect of the budget constraint on 
the optimal solution is magnified with respect to the case when the user cost parameters are 
relatively lower. This result is consistent with a priori expectations because a tight budget 
constraint limits the ability to apply M&R actions, resulting in user cost increasing non-linearly 
due to the non-linear nature of deterioration. Therefore, it is particularly critical for agencies to 
realistically assess and represent user cost and to avoid too restrictive budgets. 

4 CONCLUSION 

This report presents a methodology developed to address the IM&R decision-making at the 
network level whereby the uncertainty due to condition sampling is captured and sample sizes 
over time and across the facilities forming the network are included as decision variables in the 
optimization. In addition, applications to hypothetical yet realistic set of scenarios are presented 
and discussed. 
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Based on examining the base scenario, it is clear that larger sample sizes can compensate 
for decreasing inspection accuracy up to a point where the degrading accuracy is so large, 
increasing the sample sizes does not offer much if any value. In addition, and not surprisingly, a 
stricter annual budget constraint will results in reduced expected IM&R cost and larger expected 
user and terminal costs. And, overall, an increase in the expected total cost is expected. 
Moreover, the effect of including sampling as a decision variable is found to be appreciable in 
terms of the expected total cost at optimality. 

Based on examining all scenarios combined, the sensitivity analysis revealed that the user 
cost, annual budget constraint, terminal cost, and the spatial correlation function have 
appreciable impact on the optimal solution. Among these four factors, the impacts of the user 
cost and annual budget constraint are the most marked. Furthermore, these factors do interact 
with one another and the most notable interaction in terms of its magnitude and implications to 
agencies is that between user cost and the budget constraint. 

The above results point to the importance of capturing sampling uncertainty and the 
sampling as a decision variable in addressing the IM&R problem at the network level in the 
presence of budget constraints, a set of considerations not addressed before. Moreover, the nature 
of the results, their interpretation, and their implications also offer contributions of note to both 
practitioners and researchers. Nevertheless, it is important to conduct a more extensive 
evaluation to quantify the value of capturing sampling uncertainty and including sampling as a 
decision variable along the lines of the effect of optimal sampling discussion in the previous 
section. Such a comprehensive evaluation has been conducted for the facility level problem in 
the absence of a budget constraint (Mishalani & Gong 2008), however, it remains to be 
undertaken as part of future research for the network level problem. 

Clearly, the results are limited given the hypothetical, albeit realistic, nature of the 
scenarios considered in the numerical analyses presented in this report. Therefore, it is critical to 
demonstrate and assess the value of the developed methodology under field conditions to achieve 
a more comprehensive and realistic evaluation and possible refinements. 

Another important limitation of the developed framework worth addressing is the 
absence of capturing facility interactions. Durango-Cohen & Sarutipand (2007) captured 
important interactions, however, they did not consider condition sampling. Developing a 
decision-making framework that simultaneously captures facility interactions and includes 
condition sample sizes across facilities and over time as decision variables would be worthwhile. 
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